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Extended Methods 
 
Overview: 
 

For this analysis, we selected the most appropriate publicly available transcriptomic dataset 
and cleaned and processed the data before constructing an unsupervised gene co-expression 
network that can group functionally correlated genes into modules [1]. Genes participating in the 
same molecular and biological pathways tend to show correlated expression (co-expression) with 
each other, as they are expressed under the control of a coordinated transcriptional regulatory 
system [2]. Constructed on this principle, the transcriptomic network identified in this study 
amounts to a systems-level representation of gene-gene relationships in the healthy adult human 
prefrontal cortex (PFC), providing novel insights into network-level operations of understudied 
genes located in the recurrent 3q29 deletion (3q29Del) locus.  

Given the strong genetic link between 3q29Del and risk for schizophrenia spectrum disorders 
(SZ; estimated odds ratio >40) [3], we placed our focus on revealing the co-regulation patterns of 
3q29 interval genes as a function of their expression similarity during adulthood. This is a period 
when SZ typically manifests itself diagnostically, with peak onset in late adolescence (age 18-20 
years) and early adulthood (age 20 to 40 years) [4], and a substantial proportion of patients 
becoming ill during middle adulthood (age 40 to 60 years) [5]. We also focused our analysis on 
uncovering gene-gene relationships in the PFC: a brain region that subserves a diverse range of 
cognitive and emotional operations, is implicated in the etiology of SZ and may be particularly 
vulnerable to the effects of genetic disruption due to its protracted development [6]. To validate 
the reproducibility of this transcriptomic network, we used an independent test dataset that was 
demographically comparable to our reference dataset and assessed the preservation (i.e., how 
well-defined modules are in an independent test dataset) of each identified network module by 
permutation tests. Using a similar approach, we also assessed the quality (i.e., how well-defined 
modules are relative to the background) of each network module in repeated random splits of our 
reference dataset. 

We next identified and interrogated the modules that were found to harbor at least one 3q29 
interval gene for (1) functional enrichment, (2) higher-level organization into meta-modules, (3) 
highly connected “hub” genes and (4) “top” network neighbors of 3q29 interval genes. To generate 
testable hypotheses about which 3q29 interval genes may be causally linked to the major 
neuropsychiatric phenotypes of 3q29Del, we tested whether the top network neighbors of 
individual 3q29 interval genes show significant overrepresentation of known risk genes for SZ, or 
for two other clinical phenotypes associated with 3q29Del: autism spectrum disorders (ASD) and 
intellectual / developmental disability (IDD) ASD and IDD share genetic risk and pathogenic 
mechanisms with SZ, despite differences in the timing of clinical symptoms [7]. Based on the 
identified enrichment patterns, we developed a list of “prioritized driver genes”, consisting of select 
3q29 interval genes and their tightly correlated SZ, ASD and IDD-associated top network 
neighbors, which were subsequently found to converge onto canonical biological pathways.  

We predict that dysregulation of these prioritized molecular targets, including a hub gene 
within the 3q29 interval, and their associated biological pathways may be implicated in the 
neuropsychiatric phenotype in 3q29Del syndrome. Overall, our findings highlight the advantage 
to using unbiased systems approaches that integrate gene-level information into a higher-order, 
network-level framework to infer gene function, particularly for understudied genes with disease 
relevance. The molecular pathways and the prioritized gene-set identified in this study will 
inform new directions of neurobiological inquiry that can mechanistically connect 3q29Del with 
severe mental illness. Our approach also highlights the study of normal function in non-
pathological post-mortem tissue to further our understanding of psychiatric genetics, especially 
for rare genetic syndromes like 3q29Del, where access to post-mortem neural tissue from carriers 
is unavailable or limited. The steps described in this overview are described in great detail below.   
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Weighted gene co-expression network analysis (WGCNA) 
 
Samples used for network construction: 
 

To interrogate the functional consequences of the 3q29Del at the individual gene level, we 
employed unbiased weighted gene co-expression network analysis (WGCNA package [1, 8] in R, 
version 1.68) and organized the adult human cortical transcriptome into clusters (modules) of 
highly correlated genes (nodes). The network was constructed on publicly available RNA-Seq 
data obtained from the Genotype Tissue Expression Project (GTEx) [9] (Supp. Fig. S1), the 
largest multi-tissue open-data initiative using postmortem samples from human donors. 113 non-
pathological post-mortem samples from the PFC (Brodmann Area 9) of male and female adults 
(age range = 20-79) with no known history of psychiatric or neurological disorder were included 
in this study. Transcriptome profiling was performed using Illumina TruSeq RNA sequencing as 
described in GTEx Consortium et al. (2013, 2015) [9]. The GTEx data (release version 6) used 
for the analyses described in this manuscript were downloaded from the GTEx portal 
(http://www.gtexportal.org/home/datasets/) on 01/08/2019; the corresponding dbGaP study 
accession number is phs000424.v6.p1. 
 
Data cleaning: 
 

Six outlier samples were removed from the original dataset prior to network construction to 
prevent a potential outlier-driven bias in network structure and module detection (Supp. Fig. S2). 
Inter-sample correlation (ISC) was used as an unbiased statistical diagnostic for identifying 
outliers with divergent gene expression profiles, defined as the Pearson’s correlation between 
pairs of samples across the expression levels of all detected genes. Samples with a mean ISC 
greater than two standard deviations away from the mean of the sample-set were flagged as 
outliers and removed (as described in Oldham et al., 2008 [10]), reducing the sample size to 107. 
Details on sample attributes and donor phenotypes are available in Table S1.1 and Supp. Fig. 
S1. 
 
Protein-coding genes were extracted from the dataset based on GENCODE v19 annotations for 
gene-type [11], followed by log2 transformation of gene expression values.  For genes indexed by 
multiple splice variants, the data were further pre-processed to limit the transcriptome to a single 
transcript per gene. This step was conducted by using the collapseRows function of the WGCNA 
package in R (method = MaxMean), that identifies the transcript with fewest number of missing 
values and highest mean expression value across samples [12]. We limit the scope of this study 
to protein-coding genes with expression profiles summarized at the gene-level, in light of 
previously demonstrated drawbacks of isoform-level networks encompassing the non-coding 
transcriptome [13]. Inclusion of splice variants and non-coding RNAs increases network size by 
100-fold [13], which in turn dramatically increases the computational resources necessary for 
network analysis. Although this high computational demand can theoretically be overcome by 
using a block-wise design where automatically selected subsets of the original data are used to 
build a co-expression network in a block-by-block fashion [1], previous work has shown that 
networks generated by block-wise design reflect only an approximation of networks generated by 
single-block design, which negatively influences the accuracy of subsequent module detection 
[13]. To avoid the shortcomings of a block-wise approach and pursue the most parsimonious 
hypothesis, our dataset included only protein-coding genes, with expression values summarized 
at the gene-level. This approach yielded a trimmed protein-coding gene expression matrix of 
18,410 unique HGNC gene symbols. 
 
To remove non-biological experimental variation, the dataset was adjusted for known batch effect 
(nucleic acid isolation batch) using the empirical Bayes framework employed by the ComBat 
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function of the Surrogate Variable Analysis (SVA) package in R [14] (as described in [15]). The 
gene expression data were further corrected for age, sex, death classification (assessed by the 
4-point Hardy Scale) and post-mortem interval (PMI)-mediated covariance [16], added to the 
regression model as categorical or continuous variables as applicable (Fig. 1b, Supp. Fig. S1). 
The residuals calculated from this model were carried to downstream analysis.  Finally, since low-
expressed or non-varying genes usually represent noise in the data, we used the 
goodSamplesGenes function of the WGCNA package in R to iteratively identify and remove 
genes and samples with greater than 50% missing entries (default parameter) and genes with 
zero variance. The normalized, outlier-removed, residualized cortical expression values of 18,410 
protein-coding genes from 107 samples constitute the final dataset for construction of the network. 
 
Network construction and module detection: 
 

The single-block pipeline implemented in the WGCNA R package was employed to build a signed 
and weighted gene co-expression network using the final dataset. Co-expression similarity was 
defined as the biweight midcorrelation (bicor) coefficient between the expression profiles of gene-
pairs calculated for all possible comparisons. Bicor is a median-based measure of co-expression 
that was chosen as a robust alternative to mean-based similarity metrics (i.e., Pearson 
correlation) in evaluating similarity in gene expression [17]. To capture the continuous nature of 
pairwise interactions in biological systems and accentuate strong positive correlations, the 
resulting co-expression similarity matrix was transformed into a signed and weighted adjacency 
matrix. This step was conducted by using the soft-thresholding procedure implemented in the 
pickSoftThreshold and scaleFreePlot functions of the WGCNA package in R. A soft-thresholding 
power (𝛽) of 8 was identified as the lowest possible 𝛽 yielding a power-law degree distribution 
that approximately fits one with a scale-free network topology, (signed R2 fit index = 0.8), while 
maintaining a relatively high mean connectivity (mean k > 100) (Fig. 1c, Supp. Fig. S3). The 
rationale behind our choice to establish a scale-free topology is the demonstrated biological 
relevance of its degree distribution as a unifying property of many biological networks in nature, 
where a few hub nodes have many connections while most nodes have few connections [18-21]. 
Additionally, note that a demonstrated advantage of weighted correlation networks is the high 
robustness of the network construction to the choice of 𝛽 parameter [22].  
 
A signed adjacency matrix (Equation 1) was chosen over an unsigned adjacency matrix (Equation 
2) to re-scale the underlying pairwise correlations from the [−1, 1] interval to the [0, 1] interval, as 
opposed to treating negative correlations as positive. In other words, since the adjacency matrix 
that underlies network construction is always non-negative, a signed network was chosen to 
respect the direction (up vs. down) of the co-expression relationships to prevent a clustering 
structure that mixes negatively correlated nodes, which often belong to different biological 
categories, with positively correlated nodes. The biological relevance of signed adjacency was 
demonstrated by previous work indicating that genes showing positive transcriptional correlation 
are more likely to exhibit known protein-protein interactions than uncorrelated or negatively 
correlated genes [10, 23, 24]. This approach is further supported by the recommendations of the 
creators of the WGCNA package in R (as described in https://peterlangfelder.com/ 
2018/11/25/signed-or-unsigned-which-network-type-is-preferable/). 
 

Signed adjacency 𝐴!"
#!$%&' for genes 𝑖 and 𝑗 is defined as: 

𝐴!"
#!$%&' = %

()*!+,-	/0!,0"2

3
%
4
             (1) 

 
Unsigned adjacency 𝐴!"

5%#!$%&' for genes 𝑖 and 𝑗 is defined as: 

𝐴!"
5%#!$%&' =	 '𝑏𝑖𝑐𝑜𝑟	,𝑥! , 𝑥"/'

4
       (2) 
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The resulting signed and weighted adjacency matrix was transformed into a topological overlap 
(TO) matrix to capture not only the correlation between pairs of genes but also the connections 
among “neighborhoods” of genes [25, 26]. The TO measure (TOM) between two genes is high if 
the genes have many overlapping network connections, yielding a network interconnectedness 
measure that is proportional to the number of common neighbors shared between a pair of nodes. 
Several studies have shown that gene/protein-pairs with higher TO are more likely to play a role 
in the same functional class than gene/protein-pairs with lower TO [26-31], demonstrating that 
TOM yields biologically meaningful modules that can successfully capture the co-expression 
profile of genes encoding interacting proteins. Additionally, TOM was shown by previous work to 
be more robust to identifying spurious connections than pairwise correlation alone [32]. 
 
To explore the clustering structure of the nodes underlying our undirected network, we conducted 
average linkage hierarchical clustering on pairwise TOM, following its transformation into a 
dissimilarity measure (dissTOM = 1-TOM). To define network modules, we adaptively pruned the 
branches of the resulting dendrogram by using the dynamic-hybrid-tree-cut algorithm of the 
WGCNA package in R (Fig. 1d). This method employs a bottom-up approach that considers the 
shape of dendrogram branches in identifying clusters, yielding improved detection of outlying 
cluster members. This method was chosen, since it has been shown to outperform the traditional 
fixed-height branch cutting method for identifying biologically meaningful clusters, particularly in 
networks that exhibit a nested dendrogram structure [33]. Standard parameters were used to 
conduct this analysis: cut height = 99% of the truncated height range in the dendrogram, module 
detection sensitivity (deep split) = 2, minimum module size = 30, signed network with partitioning 
about medoids (PAM) respecting the dendrogram. To avoid over-clustering, we set the smallest 
number of genes that can be considered a module (minimum module size) to 30; this is a standard 
parameter used in the literature to establish a compromise between large modules that are robust 
and biologically informative and small modules that are possibly informative but less robust [34-
36]. This approach yielded 31 modules, with module-sizes ranging from 43 to 3,319 genes; similar 
ranges have been reported in other applications. 
 
We summarized the gene expression profiles of individual modules by eigengenes [1], identified 
as the first principal component of the expression data in a given module. Construction of 
eigengenes amounts to a network-based data reduction method that serves as a means to 
effectively correlate entire modules. Leveraging this approach, we amalgamated modules with 
very similar expression profiles to eliminate spurious assignment of highly co-expressed genes 
into separate modules. To this end, we conducted average linkage hierarchical clustering of 
module eigengenes (ME) on a correlation-based dissimilarity metric (1-pairwise Pearson’s 
correlation between MEs) and merged modules that are strongly correlated (r > 0.8 corresponding 
to cut height = 0.2) (Fig. 1d).  
 
One of the resulting modules (grey module) was reserved for genes that could not be 
unequivocally assigned to any module (did not share similar co-expression patterns with the other 
genes of the network), as determined by the iterative refinement methodology used in our analysis 
pipeline to improve module detection. Therefore, the grey module was excluded from downstream 
analysis. Finally, we tested additional WGCNA parameters and determined that basic module 
structure in modules of interest (modules harboring 3q29 interval genes) was identifiable under 
variations of carefully selected algorithm parameters. A list of gene-sets for each identified module 
is provided in Table S1.2. 
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Module preservation and quality analysis 
 
To validate the reproducibility of our identified modules, we evaluated network preservation in an 
independent transcriptomic dataset, hereafter referred to as the test dataset/network. Publicly 
available RNA-Seq data from the BrainSpan Developmental Transcriptome Project [37] was used 
to build the test network (Supp. Fig. S4). 30 non-pathological post-mortem samples from the PFC 
of male and female adults (age range = 18-37) with no known neurological or psychiatric disorder 
were used in this study. To exclude any confounding pathology, specimens had been confirmed 
by neuropathological evaluation to not contain obvious malformations, extensive neuronal loss, 
neuronal swelling, or dysmorphic neurons and neurites. Additionally, any donor with a reported 
prolonged agonal condition (i.e., coma, hypoxia, seizures etc.), ingestion of neurotoxic 
substances at the time of death, suicide, severe head injury, significant hemorrhages, prominent 
vascular abnormalities, tumors, prominent brain lesions, stroke, congenital neural abnormalities, 
and signs of neurodegeneration (i.e., amyloid plaques, Lewy bodies etc.) were also excluded (see 
technical white paper [38]). Transcriptome profiling was performed using Illumina TruSeq RNA 
sequencing. Details on sample attributes and donor phenotypes are available in Table S1.1 and 
Supp. Fig. S4. The BrainSpan data (Developmental Transcriptome Dataset; v10 summarized to 
genes) used for the analyses described in this manuscript were downloaded from the Allen Brain 
Atlas portal (https://www.brainspan.org/ static/download/) on 01/12/2019; the corresponding 
dbGaP study accession number is phs000755.v2.p1. 
 
The test dataset was pre-processed following the same pipeline used for the GTEx reference 
dataset. We were unable to correct the normalized gene expression values of the test dataset for 
batch effect and death classification-mediated covariance, due to absence of the pertinent 
information from publicly available data. However, we note that the highly selective 
inclusion/exclusion criteria used by the BrainSpan project for tissue qualification [37] mitigates a 
potential confounding effect of death classification on gene expression. The inclusion of age, sex 
and PMI in the regression model was consistent with the pre-processing pipeline applied to the 
reference dataset. No outlier sample was identified by the above described ISC method. Notably, 
the test dataset was assembled by the aggregation of transcriptomic data from four sub-regions 
of the PFC (orbital, dorsolateral, ventrolateral, and medial PFC). To rule out a potential bias in 
test network construction driven by tissue-type, we conducted average linkage hierarchical 
clustering on the BrainSpan samples used in this study. The similarity metric for clustering was 
defined as the Pearson’s correlation between gene expression levels of pairs of samples. The 
resulting dendrogram revealed no clustering pattern driven by tissue-type, ruling out PFC sub-
region as a factor that could bias network construction (Supp. Fig. S4). Upon completion of pre-
processing, the test dataset consisted of normalized and residualized gene expression values for 
18,339 unique HGNC symbols from 30 samples.  
 
To determine whether properties of within-module topology that were identified in our reference 
network were preserved in the test network, we calculated a composite network-based 
preservation statistic (Zsummary.pres) [39] for each module by using the modulePreservation function 
of the WGCNA package in R. Zsummary.pres is a summary statistic that encompasses multiple 
density-based and connectivity-based preservation statistics that test 1) whether nodes sharing 
the same module in the reference network remain highly connected in the test network (i.e., are 
groups of genes defined as modules in the reference network denser than random groups of 
genes in the test network?) and 2) whether connectivity patterns between nodes underlying the 
reference network remain similar in the test network (i.e., do hub nodes of the reference network 
preserve their high degree of connectivity in the test network?). To determine whether the 
observed preservation statistics were higher than expected by chance and to derive a 
standardized Z score for each preservation statistic, we randomly permuted the module 
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assignments in the test data (number of permutations = 200; twice as high as default) and derived 
a Zsummary.pres score for each module. The resulting scores were evaluated according to established 
thresholds [39]: Zsummary.pres < 2 indicates no evidence for preservation, 2 < Zsummary.pres < 10 
indicates moderate evidence for preservation, and Zsummary.pres > 10 indicates strong evidence for 
preservation. To account for the dependence of the Zsummary.pres score and permutation test p-
values on module-size, we set the maximum module-size parameter of the modulePreservation 
function to 1000 genes (default parameter), reducing large modules by randomly sampling 1000 
intra-modular nodes. Note that the specific goal of this preservation analysis was to determine 
the preservation strength of individual modules in relation to established Zsummary.pres score 
thresholds, as opposed to comparing the preservation statistics of modules with different sizes to 
one another (i.e., determine whether module A is more preserved than module B). Hence, 
aggregating multiple preservation statistics into an informative Zsummary.pres score constitutes a valid 
and advantageous approach for our purposes, despite its sensitivity to module-size. 
 
In addition to measuring the density and connectivity-based preservation of each module between 
the reference and test networks, we measured the quality of the identified modules in the 
reference network without a reference to the test network. The goal of this analysis was to assess 
the robustness of the identified modules (i.e., how distinct is a given module from other modules 
in the reference network?) by calculating a composite quality statistic (Zsummary.qual) [39] for each 
module, as implemented in the modulePreservation function of the WGCNA package in R. This 
approach is akin to a cluster stability analysis [40] and employs a resampling technique that 
applies the module preservation statistics outlined above to repeated random splits of the 
reference data. The resulting Zsummary.qual score indicates the robustness of a given module 
definition (hence the parameters selected for network construction and module detection) across 
networks created from the original reference data. The same Zsummary.pres thresholds outlined above 
were used to evaluate the Zsummary.qual scores. Finally, in line with the recommendations [39] of the 
creators of the WGCNA package, we also evaluated the individual preservation and quality 
statistics underlying the composite scores for each module (Table S1.4, Supp. Fig. S5). Results 
from the module preservation and quality analysis (Fig. 1e) revealed the replicable and robust 
nature of the network, thus we commenced interrogation of the network for insights into 3q29 
interval gene function. 
 
Functional characterization of network modules harboring 3q29 genes 
 
Understanding the functions of the 21 protein-coding genes hemizygously deleted in 3q29Del 
syndrome is an obligatory step towards gaining insights into the cellular mechanisms underlying 
disease etiology. Others have shown that each gene of the human genome is estimated on 
average to be involved in ten biological functions [41]. Given that many of the genes in the 
3q29Del interval are poorly annotated and some lack a functional annotation altogether (Supp. 
Fig. S6), we leveraged the transcriptomic co-expression approach to predict gene function. We 
screened each network module for membership of 3q29 interval genes and exploited major 
biological databases to derive a functional interpretation of the co-expression modules found to 
harbor at least one 3q29 interval gene (hereafter referred to as a 3q29 module).  
 
Functional enrichment analyses of individual 3q29 modules (transformed into gene-sets) were 
run on the g:Profiler webserver (http://biit.cs.ut.ee/gprofiler; Ensembl version 96, Ensembl 
Genomes version 43) by using gene ontology biological processes (GO:BP), and Reactome 
(REACT) and Kyoto Encyclopedia of Genes and Genomes (KEGG) biological pathways. For high-
confidence analysis, electronic GO annotations (“IEA”), which are assigned to gene products 
without curator verification (majority inferred in silico) and often cannot be traced to an 
experimental source, were discarded; filtering GO annotations based on evidence code has been 
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recommended in previous literature to avoid erroneous results [42]. The statistical domain scope 
for functional enrichment analysis was set to only genes with at least one known annotation 
(default parameter) to establish an effective genomic background for statistical testing using the 
hypergeometric probability function. Enriched terms surpassing the adjusted g:SCS significance 
threshold of  P <0.05 were filtered for gene-set size (allowed range: 10-2,000 genes) and semantic 
similarity to improve the specificity and interpretability of our results [43]. The g:SCS (Set Counts 
and Sizes) method for multiple comparisons correction was our method of choice for pathway 
analysis, since it was shown to outperform standard approaches, such as Bonferroni correction, 
in estimating the true effect of multiple testing over the complex structure of functional profiling 
data [44]. Functional classifications in databases such as gene ontology (GO) have a heavily 
overlapping hierarchical structure, since any term is automatically related to all other terms 
included in its relational path. Hence, statistical assumptions underlying more traditional 
correction methods such as Bonferroni, which was designed for multiple independent tests, 
cannot be met in our application. Hence, we used the novel g:SCS method (refer to [43] for details)   
as an alternative solution to the multiple testing problem that is highly complex in functional data. 
Note that the g:Profiler software that was used to perform pathway analyses in this study also 
implements the g:SCS significance thresholds by default. The REVIGO webtool 
(http://revigo.irb.hr/) was used to reduce redundancy in the identified GO terms (default semantic 
similarity measure = SimRel, allowed similarity = 0.9 (large)) [45]. Top 10 biological pathways 
(REACT) found to be enriched in individual 3q29 modules were ranked by statistical significance 
level (adjusted P < 0.05) and are shown in the main results. Extended results are provided in 
Table S1.5.  
 
Furthermore, findings of the functional enrichment analysis were also evaluated to determine 
whether identified co-expression modules reflect true biological signals as opposed to noise; this 
distinction was inferred by enrichment of the constituent genes for known biological processes 
and pathways. Our gene ontology-based approach complemented the module quality analysis 
described above.  
 
To further interrogate whether the gene co-expression modules identified in this study represent 
biologically meaningful units of nodes with shared membership of the same molecular complex 
or functional pathway, we also investigated whether the genes co-clustering in the same 
transcriptomic module tend to interact at the protein level. First, we queried the known protein 
interactors of 3q29 interval genes identified by the Human Reference Protein Interactome 
Mapping Project (HuRI; http:/interactome-atlas.org/). The interaction data in HuRI were retrieved 
from two sources: 1) a systematic binary mapping pipeline using a high-throughput yeast two-
hybrid assay, followed by retesting and validation, and 2) interactions curated from the literature 
and further filtered by HuRI to identify high-quality binary interactions (see details in [46]). 
 
Second, we tested the co-expression modules harboring 3q29 interval genes for enrichment of 
known and predicted protein-protein interactions (PPIs) from the STRING database (v.11, 
https://string-db.org/). Using the STRING search tool, PPIs were retrieved from active interaction 
sources (species: “Homo sapiens”), including experiments (biochemical data), databases 
(previously curated pathway and protein-complex knowledge), genomic context prediction 
channels (neighborhood, fusion, gene co-occurrence), and text mining. Interactions that rely on 
STRING’s RNA-seq co-expression inference pipeline were excluded from this analysis. A 
minimum interaction confidence score of 0.4 (medium confidence, default setting) was applied to 
construct a PPI network for each module; this interaction score represents the approximate 
confidence of an association based on all available evidence from active sources. The STRING 
enrichment analysis tool was used to test whether the observed number of interactions (edges) 
in each interrogated module was significantly higher than the number of edges expected if the 
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nodes were to be selected from the genome at random (see details in [47]). STRING enforces an 
upper limit on the number of query items and does not support the PPI network enrichment 
analysis of > 2,000 nodes. Hence, 2,000 genes from the green and turquoise modules, which 
harbor 4,746 and 3,319 genes respectively, were randomly subsampled without replacement, 
using the sample function in R (v. 4.0.3). The 3q29 interval genes clustering in each of these two 
modules were used as forced entries during this subsampling procedure to ensure that each 
resulting PPI subnetwork included our primary genes of interest. 
 
Identification of meta-modules harboring 3q29 genes 
 
Several studies have demonstrated that individual modules can be organized into biologically 
meaningful meta-modules that represent a higher-order organization of the transcriptome [48], 
likely reflecting pathway dependencies and synergistic function. To evaluate whether individual 
3q29 modules clustered together within larger meta-modules of the co-expression network, we 
investigated the relationship among modules by leveraging their eigengenes (ME). We calculated 
the Pearson’s correlations between all pairs of MEs and used this similarity metric to conduct 
average linkage hierarchical clustering of the MEs. Consistent with its use in other applications, 
we defined meta-modules as tight clusters of positively correlated MEs detectable as major 
branches of the resulting eigengene dendrogram [48]. The identified meta-modules were 
screened to identify the grouping patterns among 3q29 modules across the co-expression 
network.  
 
This eigengene-based network reduction framework was further utilized to determine whether 
individual 3q29 modules that were found to partake in larger meta-modules were truly distinct 
from each other. To this end, gene ontology information was leveraged to identify common versus 
distinct enrichment of biological processes and pathways in individual 3q29 modules sharing a 
meta-module. This approach also complemented the module quality analysis described above. 
 
Determination of module membership strength for 3q29 genes 
 
To measure how strongly connected individual 3q29 genes are to their assigned modules, we 
used the signedKME function of the WGCNA package in R to calculate a module membership 
measure (kME) for each 3q29 gene. kME is an eigengene-based module connectivity measure, 
defined as the Pearson’s correlation between the expression profile of a given gene and the 
eigengene (first principal component) of a given module[1]. An advantage of using kME as a 
network connectivity metric is that it allows the direct comparison of module membership values 
across modules that differ in size. This property distinguishes kME from degree-based measures 
of module connectivity, which are derived by summing a node’s total number and strength 
of connections within a module and result in a metric that can be biased by module size.  
 
A kME of 0 indicates that a gene is uncorrelated with an ME of interest and is thus unlikely to be 
a member of that module. In contrast, kME > 0.8 describes a hub gene that is highly connected 
to other genes in its module, hence predicted to be a crucial component of the overall function of 
that module. Previous work has shown that targeted disruption of a hub gene has a more 
deleterious effect on the ability of the network to function and leads to a larger number of 
phenotypic outcomes than the disruption of randomly selected genes or targeted deletion of less 
connected genes [49, 50]. These observations have led to the hypothesis that hub nodes of 
biological networks are typically associated with human disease genes. Indeed, several lines of 
evidence, particularly from cancer biology, have validated this hypothesis [51, 52]. One study has 
shown that topological features of disease-genes identified from OMIM's Morbid Map of the 
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Human Genome disproportionately exhibit hub-gene characteristics, with protein products 
participating in more known protein-protein interactions than that of non-disease genes[53]  
 
Note that there is no established definition of a hub node in network analysis, since the selection 
criteria can vary depending on the sparsity of the network; examples of hub gene definitions based 
on kME ≥ 0.7 exist in the literature. To generate rigorous WGCNA-based predictions, we adopted 
a conservative criterion that defines hub genes as nodes with kME > 0.8 (P < 0.05), a stringent 
threshold used by several other studies [54-56].  We annotated 3q29 interval genes that 
surpassed this kME threshold as hub genes, whose loss of function is predicted to produce a 
highly deleterious impact on the system. 
 
Additionally, we screened kME values to identify 3q29 genes with very weak module membership. 
Given that kME quantifies how close a gene is to its assigned cluster of co-expressed genes, we 
excluded 3q29 genes with non-significant kMEs (P > 0.05) from downstream analysis. Notably, 
we limited our evaluations to intra-modular kME values that describe a gene’s correlation with the 
eigengene of its assigned module. In rare instances, the kME of a given gene was found to be 
slightly higher for a module other than its assigned module. This finding stems from the fact that 
TOM yields a measure of network interconnectedness that is similar but not identical to an only 
correlation-based approach (as described by the creators of the WGCNA package at 
https://support.bioconductor.org/p/101579/). As noted previously, TOM-based similarity was 
shown to outperform correlation-based similarity in identifying biologically meaningful modules 
[32].  A list of kME values and corresponding p-values computed via correlation tests is provided 
in Table S1.3 for each node and module. 
 
Identification of prioritized driver genes 
 
3q29Del confers >40-fold increased risk for SZ and constitutes a shared risk factor for IDD and 
ASD. However, no single gene in this interval has been definitively associated with SZ, IDD, or 
ASD. To generate testable hypotheses about which 3q29 interval genes are causally linked to the 
major neuropsychiatric phenotypes associated with 3q29Del, we further leveraged our gene co-
expression network. We adopted the guilt-by-association approach and screened the intra-
modular subnetworks of individual 3q29 interval genes for a significant overlap with known SZ, 
ASD and IDD-risk genes. Guilt-by-association is a widely used principle that operates on the 
assumption that disease-associated genes are more closely connected to each other than 
random pairs of nodes in a network. Ample evidence demonstrates the high utility of the guilt-by-
association approach in identifying novel disease risk genes [57-61]. 
 
Previous work has shown that testing the overrepresentation of known disease-risk genes in 
entire network modules harboring a large number of genes produces an inflated false positive 
rate[13]. To avoid this, we reduced 3q29 modules to top-neighbor-based subnetworks, 
maintaining only the close intra-modular connections of individual 3q29 genes. A top neighbor 
was defined as any node whose gene expression profile has a moderate-to-high correlation 
(Spearman’s rho (ρ) ≥ 0.5) with a given 3q29 interval gene (considered a “seed” node) within the 
same module. Note that top neighbors were identified by a correlation-based hard-thresholding 
method applied only to intra-modular edges connecting seed-node pairs. Hence, the criterion for 
top neighbor identification combines the strength of scale free-topology and topological overlap 
principles of WGCNA for network construction and module detection, with subsequent application 
of a selective hard-thresholding method, resulting in a binary classification of top neighbors 
predicted to form direct functional links with 3q29 interval genes.  
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We conducted hypergeometric tests to determine whether top-neighbor-based intra-modular 
subnetworks of individual 3q29 genes are enriched for curated gene-sets with known SZ, ASD or 
IDD association. Six gene-sets were curated for this purpose from the following sources: 1) 93 
IDD-risk genes enriched for damaging de novo mutations, identified by the Deciphering 
Developmental Disorders Study [62]; 2) 86 ASD-risk genes categorized by the Simons 
Foundation Autism Research Initiative (SFARI) [63, 64] as “high-confidence candidate risk genes” 
with strong evidence for ASD association (categories = 1 & 2; downloaded on 2/15/2019 from 
https://gene.sfari.org/database/); 3) 651 SZ-related genes shown by Meng et al. (2018) [65] to 
demonstrate significant differential expression in the postmortem brain tissue of SZ 
cases/controls,  identified from the PsychENCODE BrainGVEX dataset [66]; 4) 636 SZ-related 
genes shown by Fromer et al. (2016) to demonstrate significant differential expression in the 
postmortem dorsolateral PFC tissue of SZ cases/controls, identified from the CommonMind 
Consortium dataset [67], 5) 340 SZ-risk genes adjacent to SZ-associated genetic loci, identified 
by the most recent genome-wide association study (GWAS) [68] conducted by the Psychiatric 
Genomics Consortium (PGC); 6) 290 SZ-risk genes with exonic de novo mutations, identified via 
the Neuropsychiatric Disorder De Novo Mutations Database [69] (downloaded on 2/17/2019 from 
http://www.wzgenomics.cn/NPdenovo/). Notably, these gene-sets were selectively curated from 
the literature to obtain a comprehensive yet reliable list of reported IDD, ASD and SZ-associated 
genetic variants spanning a wide range of the allele frequency spectrum. As noted previously, 
3q29 genes with non-significant intra-modular kMEs (P > 0.05) (Fig. 2c) were excluded from this 
analysis. 
 
To evaluate the specificity of the investigated disease enrichment patterns, we also tested the 
significance of the overlap between 3q29 subnetworks and negative control gene-sets associated 
with Parkinson’s disease (PD), late-onset Alzheimer’s disease (AD) and inflammatory bowel 
disease (IBD). The gene lists for these conditions were considered “negative controls,” as they 
constitute disease phenotypes (two related and one unrelated to brain health) with no known 
association to 3q29Del. To rule out a potential bias that could be introduced to our enrichment 
analysis by differences in the sizes of curated gene-sets, common genetic variants associated 
with height (large gene-set size comparable to several SZ gene-set sizes) were included as 
another negative control. Four negative control gene-sets were curated for this purpose from the 
following sources: 1) 25 AD-risk genes identified by the largest published GWAS meta-analysis 
conducted by the Genetic and Environmental Risk in AD/Defining Genetic, Polygenic and 
Environmental Risk for AD Consortium (GERAD/PERADES) [70]; 2) 67 PD-risk genes identified 
by the largest published GWAS meta-analysis conducted by the International PD Genomics 
Consortium [71]; 3) 98 IBD-related genes identified by the International IBD Genetics Consortium 
as “strong positional candidate genes” in GWAS-identified risk loci [72]; 4) 479 height-associated 
genes identified by the largest published GWAS meta-analysis conducted by the Genetic 
Investigation of Anthropometric Traits Consortium (GIANT) [73]. 
 
To accurately measure the union-size of the possible matches between the curated gene-sets 
and WGCNA-derived 3q29 subnetworks, genes that could only be present in one set (non-protein-
coding genes; gene-type annotated by GENCODE v19) were excluded from the overlap analysis, 
yielding the final gene-set sizes listed above. Notably, discrepancies in gene symbol alias usage 
were accounted for to ensure consistency in nomenclature. The background list for the 
hypergeometric test was determined as the total number of unique genes used to conduct 
WGCNA. The GeneOverlap package[74] in R (version 1.20.0) was used for this analysis. The 
hypergeometric p-values obtained by overlap analysis were corrected for multiple testing using 
the Benjamini-Hochberg procedure (n = 10 gene-sets). 3q29 genes whose subnetworks were 
found to show a significant overlap with SZ, ASD and/or IDD risk genes (adjusted P < 0.05) were 
prioritized as driver genes, along with their SZ, ASD, and/or IDD-related top neighbors from the 
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corresponding enriched disease gene-set. These prioritized driver genes are predicted to 
contribute to the emergence of the major neuropsychiatric phenotypes associated with 3q29Del. 
The list of curated gene-sets, WGCNA-derived top neighbors, WGCNA-derived prioritized driver 
genes and detailed results of the overlap analysis are provided in Tables S2.1-3. 
 
Functional characterization of prioritized driver genes 
 
According to the “local hypothesis” proposed by the emerging paradigm of network medicine, the 
human transcriptome and proteome demonstrate non-random topological characteristics, where 
disease genes tend to interact with other disease genes and play distinct roles in disrupting the 
same biochemical process underlying a common pathophenotype [75]. Motivated by this theory, 
we sought to formulate testable hypotheses about the key biological mechanisms linking 3q29Del 
to SZ, ASD, and IDD by conducting a functional enrichment analysis on the union of our prioritized 
driver genes. We used the same analysis approach described above for testing the functional 
enrichment of 3q29 modules. The biological processes and pathways that were found to surpass 
the adjusted g:SCS significance threshold of p<0.05 were filtered for gene-set size and semantic 
similarity; the top 20 biological processes and pathways found to be enriched in our prioritized 
driver genes are shown in the main results. To provide a thorough illustration of all enriched 
GO:BP terms in the main results, GO:BP findings were further organized into a network 
visualization of related functional annotation categories. Extended results are provided in Table 
S2.5.  
 
Overall, the transcriptomic network identified in this study is predicted to connect 3q29 interval 
genes with gene-sets outside the interval that participate in the same or overlapping biological 
process and associate with similar disease phenotypes. Perturbation of 3q29 interval gene 
dosage is expected to also perturb the functioning of network-partners outside the recurrent 
3q29Del locus. However, note that the underlying structure of weighted gene co-expression 
networks is agnostic to the mechanistic order of cellular and molecular events. The information 
necessary to derive the order of biological interactions is not an explicit outcome of gene co-
expression itself, since such inferences require time-dependent analysis of combinatorial 
interactions between nodes. As a result, some of the network partners identified in this study are 
expected to function upstream of their 3q29 gene partner and would likely not be affected by 
3q29Del. 
 
Proof of concept study for testing the validity of WGCNA-based predictions. 
 
Overview:  
A necessary step in determining the utility of network-based predictions is a proof of concept of 
their validity in an experimental system. To this end, we assessed the validity of our WGCNA-
derived predictions by testing the enrichment of the identified network-partners of 3q29 interval 
genes for differential expression in the mouse model of 3q29Del [76].  
 
RNA-sequencing in mouse cortex 
Mice harboring a heterozygous deletion of 1.26Mb (Del16+/Bdh1-Tfrc) that is homologous to the 
human 3q29Del locus were generated by CRISPR/Cas9 technology previously [76]. At postnatal 
day seven, five mutant and five wild-type male pups were anesthetized under isoflurane and 
rapidly decapitated. The bilateral cortical sheet was dissected, chopped with a scalpel, and 
homogenized in QIAzol (Qiagen) in a Bullet Blender Tissue Homogenizer (Next Advance, Inc., 
Troy, NY). Total RNA was isolated using the miRNeasy Mini Kit (Qiagen) with on-column DNAse 
I treatment (Qiagen). Sequencing libraries were generated using the SMART-Seq Stranded Kit 
(Takara Bio, Mountain View, CA). 50M paired-end 150bp read sequencing was performed on an 
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Illumina platform. Sequences were quality-checked and aligned to the mm10 reference genome. 
Gene quantification was conducted using HTSeq-count [77].  
Differential gene expression analysis: 
We used two analysis tools (DESeq2 [78] and edgeR [79]) using the negative binomial model to 
identify differentially expressed genes (DEGs). Since there is no established consensus on a gold-
standard statistical pipeline for conducting differential expression analysis in transcriptomic 
research, we incorporated both programs into our analysis as two independent methodologies 
representing the state of the art in bioinformatics [80]. Only the protein-coding consensus DEGs 
that were concurrently identified by DESeq2 (version 1.24.0) and edgeR (version 3.26.8) were 
carried into downstream analysis.  
 
Read counts from technical replicates were summed up using the collapseReplicates and 
sumTechReps functions of the DESeq2 and edgeR packages, respectively. This approach 
effectively increases the sequencing depth of the individual biological replicates, thereby 
increasing the power to detect differential expression. Genes with low counts were filtered by 
mean normalized counts in DESeq2 and by expression in counts per million (CPM) in edgeR. To 
minimize false negatives, we cast a wide net and determined statistically significant differences 
in gene expression at the nominal significance level (P < 0.05); a similar approach has been taken 
in previous transcriptomic studies modelling neuropsychiatric disorders [81, 82].  
 
Comparison of empirically identified DEGs and network-derived predictions: 
We tested the statistical significance of the overlap identified between DEGs found in the mouse 
model of 3q29Del and the co-expression partners of 3q29 interval genes identified by WGCNA 
via hypergeometric tests. A similar proof of concept approach has been used in previous literature 
[65]. The GeneOverlap package [74] in R was used for this analysis. We investigated intersections 
at three scales of network interconnectedness: i) the broad 3q29 network, ii) the top-neighbor-
based 3q29 subnetwork, and iii) the prioritized driver genes. To accurately measure the union-
size of the possible matches between mouse DEGs and WGCNA-based targets, all compared 
gene-sets were filtered for known human-mouse homologs as determined by the HomoloGene 
database of the National Center for Biotechnology Information (NCBI) [83], using the homologene 
package (version 1.4.68.19.3.27) in R. 
 

i) The broad 3q29 network is comprised of the union of seven WGCNA-derived modules that 
were found to harbor at least one 3q29 interval gene. The constituent genes of 3q29 modules 
show high topological overlap with one or more 3q29 genes and with one another, forming tight 
clusters of nodes that not only show high pair-wise co-expression with one another but also 
share many network neighbors. The clustering structure derived from such coordinated 
expression patterns in local regions of the genome likely reflects co-regulation and/or shared 
function among constituting genes. Hence, the union of the 3q29 modules identified in this study 
represents a broad subset of the human protein-coding genome that shows coordinated 
expression at the mRNA level with the 21 protein-coding genes located in the interval. A total 
of 11,924 genes with known human-mouse homology, including 21 3q29 interval genes 
comprise this broad network. 

 
ii) The top-neighbor-based 3q29 subnetwork represents a refined subgraph, where modules are 
restricted to only the “top neighbors” of 3q29 interval genes. These top neighbors are predicted 
to function as direct interacting partners of 3q29 genes, participating in the same or overlapping 
biological pathways within the modular organization of molecular systems. A top neighbor was 
defined as any node whose gene expression profile has a moderate-to-high pairwise correlation 
(ρ ≥ 0.5, P < 0.05) with a 3q29 interval gene (considered a “seed” node) within the same module. 
The network ties underlying this subnetwork were derived by a correlation-based hard-
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thresholding method applied only to intra-modular edges connecting seed-node pairs. Hence, 
the top neighbor criterion used to construct this sub-network combines the strengths of scale 
free-topology and topological overlap principles for network construction and module detection, 
with subsequent application of a hard-thresholding method. The total number of genes in this 
subnetwork with known human-mouse homology is 5,087, including 21 3q29 interval genes. 
 

 
iii) The prioritized driver genes constitute the most refined subset of the transcriptomic network 
connections identified in this study. These are comprised of select 3q29 genes and top 
neighbors that are predicted to function as the primary drivers of the neurodevelopmental and 
psychiatric consequences of 3q29Del. These drivers were identified by leveraging the widely 
used guilt-by-association principle predicated on the assumption that disease-associated genes 
are more closely connected to each other than random pairs of nodes in a network. As described 
in previous sections of our methods, we conducted hypergeometric tests to determine whether 
the top neighbors of individual 3q29 genes are enriched for curated gene-sets with known SZ, 
ASD or IDD association. 3q29 genes whose top neighbors were found to show a significant 
overlap with known risk genes (adjusted P < 0.05) were prioritized as driver genes, along with 
their disease-related top neighbors from the corresponding enrichment analyses. The total 
number of prioritized driver genes with known human-mouse homology is 280, including nine 
3q29 interval genes. 

 
Note that the underlying structure of weighted gene co-expression networks is agnostic to the 
mechanistic order of cellular and molecular events. As a result, some of the network targets 
identified in this study are expected to function upstream of their 3q29 gene partner and would 
likely not be affected in the mouse model of 3q29Del. 
 
 
Extended Results 
 
Unbiased gene co-expression network analysis reveals convergent and distributed 
effects of 3q29 interval genes across the adult human cortical transcriptome. 
 
Our WGCNA-based unsupervised network analysis approach, applied to publicly available high-
throughput GTEx data, revealed that the protein-coding transcriptome of the healthy adult human 
PFC can be organized into a co-expression network of 19 modules (labeled by color) (Fig. 1d, 
Fig. 2a). The identified modules group genes with highly similar expression profiles into densely 
interconnected clusters, which likely represent shared function and co-regulation. One of the 
identified modules (the grey module) contained genes that could not be unequivocally assigned 
to any module; thus, it was excluded from downstream analysis. The resulting module sizes 
(number of genes assigned to a module) ranged from 43 (steel blue) to 4,746 (green) genes, with 
an average module size of 1,014 genes (excluding grey module). Similar ranges have been 
reported in other network analysis applications. A list of gene-sets for each identified module is 
provided in Table S1.2. 
 
The 21 protein-coding genes located in the 3q29 interval were found to cluster into seven network 
modules, which represent local regions of the human protein-coding genome that demonstrate 
coordinated expression with the 3q29 locus (Fig. 2a). These modules are referred to as 3q29 
modules, and were labeled as black (size = 1,170 genes), brown (size = 1,972 genes), dark 
turquoise (size = 496 genes), green (size = 4,746 genes), magenta (size = 1,437 genes), midnight 
blue (size = 1,414 genes), and turquoise (size = 3,319 genes) modules. Moreover, 18 / 21 3q29 
interval genes were found to concentrate into just four modules (brown, green, midnight blue, 
turquoise) (Fig. 2a), suggesting that the haploinsufficiency of the 3q29 locus may perturb the 
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same biological processes via multiple hits, cumulatively disrupting redundancy and 
compensatory resiliency in the normative regulation of cellular functions. Simultaneously, leading 
candidate genes DLG1 (black) and PAK2 (dark turquoise), which were previously hypothesized 
to contribute to neuropsychiatric pathology, were found in opposite branches of the network, 
demonstrating the potential distributed effects of this CNV across the transcriptomic landscape 
(Fig. 2a). The modular allocation of 3q29 interval genes is listed below: 
 

Modules harboring 3q29 interval genes (“3q29 Modules”) 
Network module Number of 3q29 interval genes Constituent 3q29 interval gene symbols 
Black 1 DLG1 
Brown 4 NCBP2, TFRC, TM4SF19, ZDHHC19 
Dark turquoise 1 PAK2 
Green 6 BDH1, PIGZ, PCYT1A, SMCO1, SLC51A, MFI2 
Magenta 1 RNF168 
Midnight blue 3 UBXN7, SENP5, WDR53 
Turquoise 5 CEP19, FBXO45, PIGX, TCTEX1D2, NRROS 

 
The average linkage hierarchical clustering of the module eigengenes revealed that the identified 
modules further clustered into three higher level meta-modules (clusters of highly correlated 
modules), detected as major branches of the resulting eigengene dendrogram (Fig. 2a, 2b). The 
magenta, green and turquoise 3q29 modules clustered together within the first meta-module, 
grouping 12 3q29 interval genes: RNF168, BDH1, PIGZ, PCYT1A, SMCO1, SLC51A, MFI2, 
CEP19, FBXO45, PIGX, TCTEX1D2 and NRROS. The brown and dark turquoise 3q29 modules 
clustered together within a second meta-module, grouping five 3q29 interval genes: NCBP2, 
TFRC, TM4SF19, ZDHHC19 and PAK2. Finally, the midnight blue and black 3q29 modules were 
found to cluster together within a third meta-module, grouping three 3q29 interval genes: DLG1, 
UBXN7, SENP5 and WDR53. The observed grouping, as well as the segregation, of sets of 3q29 
modules into distinct meta-modules represents a higher-order transcriptomic organization of the 
3q29 locus, which likely reflects pathway dependencies and interactions between biological 
processes involving 3q29 interval genes. These findings suggest that, rather than functioning as 
independent non-interacting units, sets of 3q29 interval genes and their co-expressed network 
partners may work in synergy at both the module and meta-module levels of transcriptomic 
organization (Fig. 2a, 2b), and likely constitute interacting sources of pathology in 3q29Del 
syndrome.   
 
Pathway analysis points to functional involvement of the 3q29 locus in nervous-system 
functions and core aspects of cell biology. 
 
The functional enrichment analysis of individual 3q29 modules showed that the constituent genes 
of each module load highly onto canonical biological processes and pathways (Fig. 2d). These 
functional enrichment findings validate that our co-expression-based 3q29 modules reflect 
clustering dynamics that are biologically meaningful. 
 
Functional characterization of the black module: We observed that the biological processes and 
pathways that were significantly overrepresented in the black module mainly encompass terms 
related to regulation of gene expression and maintenance of the integrity of the cellular genome. 
Based on the ranking of p-values adjusted for multiple testing, the top biological pathways 
(annotated by the Reactome database) that were overrepresented in the black module include 
metabolism of RNA (REAC:R-HSA-8953854, adjusted P = 2.45E-07), processing of capped 
intron-containing pre-mRNA (REAC:R-HSA-72203, adjusted P = 7.74E-04), chromatin 
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organization (REAC:R-HSA-4839726, adjusted P = 6.36E-03), mRNA splicing (REAC:R-HSA-
72172, adjusted P = 2.11E-02), post-translational protein modification (REAC:R-HSA-597592, 
adjusted P = 2.33E-02), DNA Repair (REAC:R-HSA-73894, adjusted P = 4.02E-02) and tRNA 
processing (REAC:R-HSA-72306, adjusted P =  4.97E-02).  
 
Functional characterization of the midnight-blue module: Similarly, the midnight-blue module, 
which is in the same meta-module as the black module, was found to be enriched for biological 
pathways and processes that are involved in DNA repair and regulation of gene expression at the 
levels of transcription and translation, as well as cellular response to stress. An important 
functional signature that set the midnight blue module apart from the black module was its specific 
enrichment for terms related to cell cycle regulation. The top biological pathways that were 
overrepresented in the midnight blue module include gene expression (transcription) (REAC:R-
HSA-74160, adjusted P = 2.10E-39), metabolism of RNA (REAC:R-HSA-8953854, adjusted P = 
1.64E-06), DNA double-strand break repair (REAC:R-HSA-5693532, adjusted P = 9.79E-04), 
mRNA 3'-end processing (REAC:R-HSA-72187, adjusted P = 5.49E-04), cell cycle (REAC:R-
HSA-1640170, adjusted P = 3.26E-06), mRNA splicing (major pathway) (REAC:R-HSA-72163, 
adjusted P = 5.33E-03), cell cycle checkpoints (REAC:R-HSA-69620, adjusted P = 5.73E-03), 
transport of mature mRNA derived from an intron-containing transcript (REAC:R-HSA-159236, 
adjusted P = 1.53E-02), and transcriptional regulation by the tumor suppressor TP53 (REAC:R-
HSA-3700989, adjusted P = 2.10E-02).  
 
Functional characterization of the brown module: Assessment of shared function among 
constituent genes of the brown module revealed primary enrichment for biological pathways and 
processes involved in cellular metabolism and mitochondrial function. The top biological pathways 
that were overrepresented in the brown module include fatty acid metabolism (REAC:R-HSA-
8978868, adjusted P = 7.59E-08), mitochondrial fatty acid beta-oxidation (REAC:R-HSA-77289, 
adjusted P = 8.33E-05), chondroitin sulfate/dermatan sulfate metabolism (REAC:R-HSA-
1793185, adjusted P = 1.42E-03), peroxisomal protein import (REAC:R-HSA-9033241, adjusted 
P = 1.79E-03), metabolism of fat-soluble vitamins (REAC:R-HSA-6806667, adjusted P = 4.99E-
03), peptide hormone biosynthesis (REAC:R-HSA-209952, adjusted P = 8.72E-03), solute-carrier 
(SLC)-mediated transmembrane transport (REAC:R-HSA-425407, adjusted P = 8.94E-03), and 
diseases associated with glycosaminoglycan metabolism (REAC:R-HSA-3560782, adjusted P = 
1.30E-02). Notably, the brown module was also found to be enriched for two canonical KEGG-
annotated pathways: the Hippo signaling pathway (KEGG:04390, adjusted P = 4.82E-03) and the 
Wnt signaling pathway (KEGG:04310, adjusted P = 4.96E-02), which play crucial roles in growth 
and developmental pathways with substantial cross-talk [84]. 
 
Functional characterization of the dark turquoise module: The dark turquoise module was found 
to coalesce genes that are enriched for biological functions in epigenetic regulation of gene 
expression, as well as in signal transduction pathways that are mediated by Rho GTPases. This 
latter function is at least in part attributable to PAK2, the only 3q29 interval gene assigned to this 
module, which encodes a known Rho GTPase effector. Intriguingly, this module was also found 
to be enriched for a functional role in estrogen receptor-mediated signaling. In particular, the top 
terms that were overrepresented in the dark turquoise module include estrogen-dependent gene 
expression (REAC:R-HSA-9018519, adjusted P = 5.08E-06), estrogen receptor (ESR)-mediated 
signaling (REAC:R-HSA-8939211, adjusted P = 9.52E-06), Rho GTPase effectors (REAC:R-
HSA-195258, adjusted P = 1.35E-05), SIRT1 negatively regulates rRNA expression (REAC:R-
HSA-427359, adjusted P = 2.09E-05), gene silencing by RNA (REAC:R-HSA-211000, adjusted 
P = 3.95E-05), nucleosome assembly (REAC:R-HSA-774815, adjusted P = 4.75E-05), chromatin 
modifying enzymes (REAC:R-HSA-3247509, adjusted P = 5.12E-05), signaling by nuclear 
receptors (REAC:R-HSA-9006931, adjusted P = 8.46E-05), meiotic synapsis (REAC:R-HSA-
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1221632, adjusted P = 8.73E-05), and epigenetic regulation of gene expression (REAC:R-HSA-
212165, adjusted P = 1.44E-04). Notably, the dark turquoise module was found to share the same 
meta-module as the metabolism-related brown module, suggesting the involvement of several 
3q29 interval genes in a hierarchical transcriptomic control structure that interconnects Rho 
GTPase-mediated signaling cascades and estrogen-regulated signal transduction pathways with 
metabolic regulation. Emerging empirical findings demonstrate the existence of a crosstalk 
between these fundamental pathways [85-87], supporting the biological relevance of the co-
expression-based clustering patterns underlying the meta-module that harbors the brown and 
dark turquoise modules identified in this study. 
 
Functional characterization of the turquoise module: The biological processes that were 
overrepresented in the turquoise module primarily encompass nervous-system specific terms 
comprising the regulation of nervous system development and function. Other enriched biological 
functions that are non-specific but cardinal to nervous-system operations involve ion transport, 
calcium signaling, cyclic adenosine monophosphate (cAMP)-dependent signal transduction and 
cell projection organization. Specifically, the top Reactome-based biological pathways that were 
enriched in the turquoise module include neuronal system (REAC:R-HSA-112316, adjusted P = 
2.98E-12), protein-protein interactions at synapses (REAC:R-HSA-6794362, adjusted P = 7.12E-
07), neurexins and neuroligins (REAC:R-HSA-6794361, adjusted P = 3.58E-06), transmission 
across chemical synapses (REAC:R-HSA-112315, adjusted P = 6.31E-06), neurotransmitter 
receptors and postsynaptic signal transmission (REAC:R-HSA-112314, adjusted P = 9.47E-05), 
serotonin receptors (REAC:R-HSA-390666, adjusted P = 6.42E-03), the citric acid (TCA) cycle 
and respiratory electron transport (REAC:R-HSA-1428517, adjusted P = 7.00E-03), and 
unblocking of N-methyl-D-aspartate (NMDA) receptors, glutamate binding and activation 
(REAC:R-HAS 438066, adjusted P = 1.41E-02). Complementing these biological pathways, GO 
biological processes that were found to be enriched in the turquoise module include regulation of 
synaptic plasticity (GO:0048167, adjusted P = 6.68E-03), cognition (GO:0050890, adjusted P = 
2.91E-02), neuron differentiation (GO:0030182, adjusted P = 3.19E-02), long-term potentiation 
(GO:0060291, adjusted P = 3.81E-02) and learning and memory (GO:0007611, adjusted P = 
4.20E-02). Dysregulation of these biological processes and pathways has been implicated in the 
etiology of major neuropsychiatric and neurodevelopmental disorders, including SZ and ASD [88, 
89]. Hence, the observed functional enrichment profile highlights a likely pivotal role for the 
coordinated expression of the 3q29 interval genes and network partners that cluster in the 
turquoise module in establishing and maintaining the healthy functioning of the brain.  
 
Functional characterization of the green module: Similar to the turquoise module, the pathway 
enrichment analysis of the genes constituting the green module revealed primary enrichment for 
shared function in several nervous-system specific biological processes. The overarching 
functional characteristics of this module are regulation of nervous system development, 
interactions between neuroactive ligands and receptors, synaptic vesicle cycle, intracellular 
trafficking systems (i.e., vesicle-mediated synaptic transport) and synapse assembly. The top 
Reactome-annotated biological pathways that were found to be enriched in the turquoise module 
include neuronal system (REAC:R-HSA-112316, adjusted P = 7.76E-07), the role of GTSE1 in 
G2/M progression after G2 checkpoint (REAC:R-HSA-8852276, adjusted P = 6.14E-04), 
potassium channels (REAC:R-HSA-1296071, adjusted P = 2.99E-03), L1 cell adhesion molecule 
(L1CAM) interactions (REAC:R-HSA-373760, adjusted P = 8.69E-03), transmission across 
chemical synapses (REAC:R-HSA-112315, adjusted P = 1.66E-02), G protein-coupled receptor 
(GPCR) ligand binding (REAC:R-HSA-500792, adjusted P = 1.74E-02), G alpha (q) signaling 
events (REAC:R-HSA-416476, adjusted P = 2.37E-02), recycling pathway of L1 (REAC:R-HSA-
437239, adjusted P = 3.93E-02), coat protein complex I (COPI)-mediated anterograde transport 
(REAC:R-HSA-6807878, adjusted P = 4.27E-02), and adenosine triphosphate-binding cassette 
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(ABC) transporter disorders (REAC:R-HSA-5619084, adjusted P = 4.36E-02). The observed 
nervous system-specific functional enrichment findings suggest heightened disease-relevance for 
the 3q29 interval genes and intra-modular partners that coalesce in the green module. The 
neuropathology-associated functional characterization of the green module parallels that of the 
turquoise module, which shares the same meta-module as the green module. This functional 
overlap, which was identified agnostically to meta-module membership, presents further support 
for the utility of our approach in detecting biologically meaningful non-random network structures 
that organize gene expression in the healthy adult human cortex. 
 
Functional characterization of the magenta module: The magenta module was found to be 
predominantly enriched for biological processes and pathways involved in post-translational 
protein modifications by small protein conjugation or removal, ubiquitin-dependent protein 
catabolism, intracellular protein transport and localization, and the ubiquitin-proteasome system. 
Hence, coordinated expression of the 3q29 interval genes and network partners that participate 
in the magenta module likely plays an important role in controlling the modification and 
spatiotemporal colocalization of substrates necessary for a variety of intracellular interactions. 
Moreover, pathway enrichment analysis revealed a link between magenta module genes and the 
initiation of MHC class I (MHC-I)-dependent immune responses, driven by a genomic locus that 
is increasingly implicated in the etiology of SZ [90]. MHC-I antigen presentation has been shown 
to strictly depend on peptide supply by the ubiquitin-proteasome system to initiate an effective 
adaptive immune response[91]; thus, the simultaneous enrichment of these interacting processes 
in a single module supports the biological relevance of the identified pattern of clustering. 
Specifically, the top Reactome-annotated biological pathways that were found to be significantly 
overrepresented in the magenta module include post-translational protein modification (REAC:R-
HSA-597592, adjusted P = 1.22E-07), gene expression (transcription) (REAC:R-HSA-74160, 
adjusted P = 7.98E-06), MHC-I mediated antigen processing and presentation (REAC:R-HSA-
983169, adjusted P = 1.69E-05), antigen processing: ubiquitination and proteasome degradation 
(REAC:R-HSA-983168, adjusted P = 2.78E-05), RNA polymerase II transcription (REAC:R-HSA-
73857, adjusted P = 1.05E-04), signaling by TGF-beta family members (REAC:R-HSA-9006936, 
adjusted P = 2.87E-03), protein ubiquitination (REAC:R-HSA-8852135, adjusted P = 1.14E-02), 
and sumoylation (REAC:R-HSA-2990846, adjusted P = 1.94E-02). Overall, the functional profile 
of the magenta module encompasses many known regulators of brain function, including synapse 
formation and trans-synaptic signaling. Hence, the functional characteristics of the magenta 
module complement that of its meta-module partners, the green and turquoise modules.  

 
Taken together, functional characterization of the 3q29 modules (Fig. 2d) point to novel 
mechanisms of shared or overlapping action for sets of 3q29 interval genes that cluster in the 
same network module and further coalesce in the same meta-module. Simultaneously, the variety 
of biological pathways that were found to be enriched in 3q29 modules suggests distributed 
involvement of this locus in not only nervous-system specific functions, such as regulation and 
organization of synaptic signaling and components, but also in core aspects of cell biology, 
including cellular metabolism, transcriptional regulation, protein modifications, and cell cycle 
regulation. Extended results of the pathway enrichment analysis are provided in Table S1.5. 
 
Simultaneously, PPI network enrichment analysis revealed that all 3q29 modules show significant 
enrichment for PPIs that were systematically curated from the STRING protein interactome 
database (Fig. S8, Table S1.8), augmenting confidence in our RNA-Seq based network 
predictions with proteomic evidence (midnight blue, black, brown, and magenta modules: P-value 
< 1.00e-16; dark turquoise module: P-value = 1.11e-16; green module: P-value = 8.62e-08; 
turquoise module: P-value = 4.30e-09). 
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PPI Enrichment Statistics in 3q29 Modules | Source: STRING Protein interaction Database 

3q29 
Module 

Module 
Size 

# of matching 
entries in 
STRING 

Observed 
# of edges 

Avg. node 
degree 

Avg. local 
clustering 
coefficient 

Expected 
# of edges 

PPI 
enrichment 
p-value 

Midnight 
blue  

1,414 1,394 6,625 9.51 0.31 4,357 < 1.00E-16 

Black  1,170 1,159 4,699 8.11 0.30 3,434 < 1.00E-16 
Brown 1,972 1,928 10,902 11.30 0.29 7,930 < 1.00E-16 
Magenta  1,437 1,415 7575 10.70 0.29 5,984 < 1.00E-16 
Dark 
turquoise  

496 479 911 3.80 0.33 683 1.11E-16 

Green  2,000 1,928 8,887 9.22 0.29 8,403 8.62E-08 
Turquoise  2,000 1,950 11,076 11.4 0.28 1,0481 4.30E-09 

 
Detailed PPI enrichment statistics for each 3q29 module derived from the STRING Protein 
interaction Database are provided in the table above. A small PPI enrichment p-value indicates 
that the protein products of genes that were found to be highly co-expressed with 3q29 interval 
genes in our transcriptomic network analysis are not organized into modules at random and that 
the observed number of edges calculated for each 3q29 module based on PPI pairs curated from 
STRING is significant (P < 0.05) (Fig. S8, Table S1.8). This enrichment analysis was 
complemented with other relevant PPI network statistics also listed in the table above, including 
average node degree, which reflects the number of intra-modular PPIs that the protein product of 
a gene from a given module has on average at the minimum required interaction score threshold 
of 0.4. The clustering coefficient is a measure of how connected the nodes in the inferred network 
are. The expected number of edges reflects how many edges are to be expected if the nodes 
were to be selected from the genome at random. More detail on active interaction sources and 
other parameters can be found in [47] and at https://string-db.org/.” 
 
Finally, we identified qualitative overlaps between the transcriptomic co-expression partners of 
3q29 interval genes identified via WGCNA and known protein partners of 3q29 interval genes 
curated from the HuRI database (Fig. S7, Table S1.7). Of the 21 protein coding genes located in 
the 3q29 interval, only 14 (CEP19, DLG1, FBXO45, MFI2, NCBP2, PAK2, PCYT1A, RNF168, 
SLC51A, TCTEX1D2, TFRC, UBXN7) were found to have an entry on HuRI, 50% of which 
(FBXO45, MFI2, NCBP2, RNF168, SLC51A, TCTEX1D2, TM4SF19) had less than eight known 
proteome-wide interactors. A total of 193 distinct protein interactors were identified on HuRI for 
these 14 3q29 interval genes (after removing duplicates), 184 of which were identified as a node 
in our gene co-expression network. Of these 184, 137 (74%) were found to cluster in one of seven 
modules harboring 3q29 interval genes. 46% of the protein interactors identified in 3q29 modules 
share the same meta-module as their interacting 3q29 interval gene, 27% of which further show 
an overlap at the module level.  
 
The full list of PPIs curated from HuRI and STRING, and brief statistics and visual illustrations of 
the resulting PPI networks can be found in Fig. S7, Fig. S8, Table S1.7 and Table S1.8. 
 
Network modules found to harbor 3q29 interval genes are robust and strongly 
reproducible in an independent test dataset. 
 
To ensure the reproducibility of our network analysis results, we tested the preservation of various 
properties of graph structure that underly the modules identified in this study with respect to an 
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independent dataset obtained from the BrainSpan Project (Supp. Fig. S4). We calculated multiple 
density-based and connectivity-based preservation statistics for each module using a permutation 
test procedure and summarized the observed statistics by a composite Z-statistic, Zsummary.pres. All 
identified modules, except for the grey module (unassigned genes), were found to be successfully 
preserved in the test network (Zsummary.pres > 2) (Fig. 1e). Specifically, 3/18 modules exhibited 
moderate evidence of preservation (2 < Zsummary.pres < 10), and 15/18 modules, including all 3q29 
modules, exhibited strong evidence of preservation (Zsummary.pres > 10) (Fig. 1e). Moreover, the 
resulting composite preservation statistics of all 3q29 modules were substantially higher than that 
of a randomly drawn sample of 1,000 genes that represent the entire reference network as a 
single artificial module (labeled as the gold module, Zsummary.pres.gold = 6.78). 
 
In addition to preservation statistics, we calculated multiple module quality statistics that measure 
how well-defined or robust the boundaries of individual modules are in the reference network. By 
employing a resampling technique that applies module preservation statistics to repeated random 
splits of our reference data, we obtained a composite Z-statistic for each module (Zsummary.qual) that 
standardizes and summarizes multiple cluster quality statistics. All 18 modules showed strong 
evidence for high cluster quality (Zsummary.qual > 10), revealing robust module definitions (Supp. Fig. 
S5). Specifically, all 3q29 modules had a Zsummary.qual score ≥ 20 (Fig. 1e).  
 
Finally, in line with the recommendations of the creators of the WGCNA package [39], we also 
evaluated the individual preservation and quality statistics underlying the composite Zsummary.pres 
and Zsummary.qual scores derived for each module. Individual module preservation statistics mostly 
converge on the finding that (1) nodes sharing the same module in the reference network remain 
highly connected in the test network and (2) connectivity patterns between nodes underlying the 
reference network remain similar in the test network (Supp. Fig. S5). Similarly, individual module 
quality statistics predominantly indicate strong evidence for high cluster quality in all identified 
modules across networks created from random splits of the original reference data (Supp. Fig. 
S5).  
 
Overall, these findings support the strong reproducibility and robustness of our 3q29 modules, 
allowing high-confidence screening of the transcriptomic connectivity patterns formed by 3q29 
interval genes in the healthy adult human PFC. See Table S1.4 for detailed results of the module 
preservation and quality analysis. 
 
UBXN7 is a highly connected cortical hub-gene predicted to play a crucial role in the 
neuropsychiatric sequela of 3q29Del. 
 
To measure how strongly connected individual 3q29 interval genes are to their assigned network 
modules, we calculated the eigengene-based module connectivity measure (kME) of each 3q29 
interval gene for its respective module (Fig. 2c). To reiterate, this measure quantifies how close 
a node is to its assigned module and can be applied to identify hub genes (kME > 0.8, P < 0.05), 
which are highly correlated with their module eigengene and exhibit high connectivity in their 
module. Intriguingly, our results revealed that UBXN7, an understudied and poorly annotated 
3q29 interval gene, is a hub gene of its module (kME = 0.84, P = 8.33E-30, midnight blue module 
size = 1,414 genes). Topological features of known disease-genes have been shown to 
disproportionately exhibit hub-gene characteristics compared to non-disease genes [53]. 
Supported by this literature, we predict that (1) UBXN7 exerts central influence on a large network 
of co-expressed genes, and (2) loss of function mutations in UBXN7 can cause major dysfunction 
in the biological pathways involving this gene. Consequently, we prioritize UBXN7 as a major 
driver gene with likely disease relevance in 3q29Del. Intra-modular kME values of individual 3q29 
genes, ranked from highest to lowest, are listed below: 
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Moreover, evaluation of the module membership strengths of 3q29 interval genes revealed that 
SMCO1 (kME = 0.11, P = 0.25), SLC51A (kME = 0.17, P = 0.09) and MFI2 (kME = 0.09, P = 0.35) 
have non-significant kMEs for their assigned module, suggesting poor module connectivity. The 
mRNA expression summaries obtained from the Human Protein Atlas [92] (HPA) for 3q29 interval 
genes indicate nearly negligible or very low mRNA expression levels for SMCO1 (consensus 
normalized expression value = 0.1), SLC51A, (consensus normalized expression value = 0.4), 
and MFI2 (consensus normalized expression value = 2.8) in the human cerebral cortex. These 
data indicate the low abundance of these 3q29 interval genes in our tissue of interest, which likely 
relates to their peripheral network assignments in our analysis. Consequently, SMCO1, SLC51A 
and MFI2 were excluded from downstream analysis to ensure accurate refinement of tight 
network connections formed by 3q29 interval genes.  
 
A list of kME values and associated p-values for all network node-module pairs is provided in 
Table S1.3. A list of mRNA expression summaries obtained from the HPA for all 3q29 interval 
genes is provided in Table S1.6. 
 
Nine 3q29 interval genes form transcriptomic subnetworks enriched for known SZ, ASD 
and IDD-risk genes. 
 
To systematically generate testable hypotheses regarding which 3q29 interval genes are causally 
linked to the major neuropsychiatric phenotypes associated with 3q29Del, we reduced 3q29 
modules to strongly connected top neighbors of individual 3q29 genes and screened the resulting 

Eigengene-based module connectivity strength of 3q29 interval genes 

3q29 interval gene Network module Intra-modular kME Associated p-value 
UBXN7 Midnight blue 0.84 8.33E-30 
SENP5 Midnight blue 0.74 8.62E-20 
PAK2 Dark turquoise 0.74 9.77E-20 
PIGX Turquoise 0.71 1.81E-17 
CEP19 Turquoise 0.70 3.13E-17 
RNF168 Magenta 0.70 5.06E-17 
NCBP2 Brown 0.68 8.78E-16 
PIGZ Green 0.68 1.08E-15 
BDH1 Green 0.64 8.32E-14 
FBXO45 Turquoise 0.62 1.46E-12 
WDR53 Midnight blue 0.59 2.04E-11 
DLG1 Black 0.56 4.38E-10 
TCTEX1D2 Turquoise 0.51 2.62E-08 
NRROS Turquoise 0.43 4.52E-06 
PCYT1A Green 0.40 2.00E-05 
TFRC Brown 0.39 3.56E-05 
ZDHHC19 Brown 0.30 1.57E-03 
TM4SF19 Brown 0.26 7.39E-03 
SLC51A Green 0.17 0.09 
SMCO1 Green 0.11 0.25 
MFI2 Green 0.09 0.35 
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top neighbors for a significant overlap with known SZ, ASD or IDD-risk genes. To reiterate, this 
approach leverages the extensively validated principle of guilt-by-association, which postulates 
that the disease-relevance of a particular gene is partially a property determined by its 
relationships in a biological network.  
 
A top neighbor was defined as any node whose gene expression profile has a moderate-to-high 
pairwise correlation (ρ ≥ 0.5, P < 0.05) with a 3q29 interval gene within the same module. 
Intriguingly, our results revealed that several 3q29 interval genes are among the top neighbors of 
one another within the same module. FBXO45 (ρ = 0.5, P = 5.43E-09) and PIGX (ρ = 0.6, P = 
1.24E-10) were identified as top-neighbors of CEP19 in the turquoise module. Similarly, SENP5 
and WDR53 were top-neighbors of each other (ρ = 0.5, P = 1.05E-07) in the midnight blue module. 
This finding further suggests that the correlated activity of subsets of 3q29 interval genes may 
converge upon the same or synchronized multicomponent biological processes in the adult PFC.  
 
Moreover, TM4SF19 (0 top neighbors) and ZDHHC19 (3 top neighbors) were found to have no 
or < 5 intra-modular partners in the brown module that met the correlation threshold to qualify as 
top neighbors. Similar to SMCO1, SLC51A and MFI2, the mRNA expression summaries obtained 
from the HPA[92] for TM4SF19 (consensus normalized expression value = 0.5) and ZDHHC19 
(consensus normalized expression value = 0) indicate negligible or very low mRNA expression 
levels in the human cerebral cortex. These data independently indicate the low abundance of 
these 3q29 interval genes in our tissue of interest, which likely reflects the reason behind their 
lack of strongly connected top neighbors in our network analysis. Hence, TM4SF19 and 
ZDHHC19 were excluded from our downstream disease-association analysis, along with SMCO1, 
SLC51A and MFI2, which were deprioritized earlier due to poor module connectivity.  
 
The intra-modular top neighbors of the remaining 16 3q29 interval genes were interrogated for 
overlap with six curated lists of evidence-based IDD, ASD or SZ-risk genes, spanning a wide 
range of the allele frequency spectrum (Fig. 3a). Hypergeometric test results, corrected for 
multiple testing, revealed a significant overrepresentation of one or more of these established risk 
gene-sets among the top neighbors of nine 3q29 interval genes (adjusted P < 0.05): BDH1, 
CEP19, DLG1, FBXO45, PIGZ, RNF168, SENP5, UBXN7 and WDR53 (Fig. 3b). Details of the 
enrichment results with respect to module membership are provided below. 
 

In the black module, top neighbors of DLG1 (gene-set size = 294) were found to be enriched 
for known SZ-risk genes from the exonic de novo mutations gene-set (adjusted P = 1.11E-05). 
This identified intersection comprises 18 unique top neighbors of DLG1 with known SZ 
association. Note that DLG1 was the only 3q29 interval gene that clustered in the black module. 
 
In the midnight blue module, all three constituent 3q29 interval genes had top neighbors that 
loaded highly onto known IDD, ASD and/or SZ-risk genes. Particularly, top neighbors of UBXN7 
(gene-set size = 811) were enriched for known IDD (overlap size = 14, adjusted P = 3.05E-04), 
ASD (overlap size = 15, adjusted P = 5.46E-05), and SZ-risk genes from the CommonMind 
case-control gene-set (overlap size = 45, adjusted P = 4.20E-03).  In addition, top neighbors of 
SENP5 (gene-set size = 713) were enriched for known IDD (overlap size = 11, adjusted P = 
5.05E-03) and ASD-risk genes (overlap size = 12, adjusted P = 1.28E-03). Similarly, top 
neighbors of WDR53 (gene-set size = 278) had a significant overlap with known IDD (overlap 
size = 6, adjusted P = 1.51E-02) and ASD-risk genes (overlap size = 6, adjusted P = 1.51E-02). 
The union of these identified intersections adds up to a total of 67 unique top neighbors with 
known IDD, ASD and/or SZ association in this module. 
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In the green module, only two out of the six constituent 3q29 interval genes were found to have 
top neighbors that showed a significant overrepresentation of SZ-risk genes. Specifically, top 
neighbors of BDH1 (gene-set size = 1008) were enriched for known SZ-risk genes from the 
CommonMind case-control gene-set (overlap size = 66, adjusted P = 4.49E-06). Similarly, top 
neighbors of PIGZ (gene-set size = 995) were also enriched for known SZ-risk genes from the 
CommonMind case-control gene-set (overlap size = 58, adjusted P = 7.03E-04). The union of 
these identified intersections adds up to a total of 75 unique top neighbors with known SZ 
association in this module. 

 
In the magenta module, top neighbors of RNF168 (gene-set size = 556) had a significant overlap 
with known IDD (overlap size = 9, adjusted P = 1.07E-02) and SZ-risk genes from the 
CommonMind case-control gene-set (overlap size = 65, adjusted P = 5.21E-17). The union of 
these identified intersections adds up to a total of 73 unique top neighbors with known SZ and/or 
IDD association in this module. Note that RNF168 was the only 3q29 interval gene that clustered 
in the magenta module. 
 
In the turquoise module, only two out of the five constituent 3q29 interval genes had top 
neighbors that loaded highly onto known IDD, ASD and/or SZ-risk genes. Specifically, top 
neighbors of CEP19 (gene-set size = 1161) were enriched for known IDD (overlap size = 16 , 
adjusted P = 1.64E-03), ASD (overlap size = 15, adjusted P = 1.64E-03), and SZ-risk genes 
from the exonic de novo mutations gene-set (overlap size = 29, adjusted P = 3.32E-02). In 
addition, top neighbors of FBXO45 (gene-set size = 1101) were also enriched for known IDD-
risk genes (overlap size = 14, adjusted P = 1.35E-02). The union of these identified intersections 
adds up to a total of 51 unique top neighbors with known IDD and/or SZ association in this 
module.  
 
Finally, there was no statistically significant evidence for overrepresentation of known disease 
genes of interest among the top neighbors of 3q29 interval genes that clustered in the brown or 
dark turquoise modules. 

 
To evaluate the specificity of the identified disease enrichment patterns, we also tested the top 
neighbors of 16 3q29 interval genes for overlap with known PD, late-onset AD and IBD risk genes. 
These disease phenotypes have no known link to 3q29Del syndrome, thus, genetic risk loci 
associated with these conditions were considered negative controls in this network analysis. In 
addition, a large list of common variants associated with height were included in our analysis as 
a fourth negative control to rule out a potential bias that could be introduced to our analysis by 
differences in the sizes of curated gene-sets. Our results indicate no statistically significant 
evidence for overrepresentation of AD or IBD-risk genes among the top neighbors of interrogated 
3q29 interval genes. Only the top neighbors of SENP5 (gene-set size = 713) showed a significant 
overlap with height-associated genes (overlap size = 30, adjusted P = 2.36E-02). Additionally, the 
top neighbors of NRROS (gene-set size = 68), which did not show an enrichment for known IDD, 
ASD, or SZ risk genes, exhibited a small but significant overlap with known PD-risk genes (overlap 
size = 3, adjusted P = 2.00E-02) (Fig. 3b).  
 
Overall, 2 out of 64 hypergeometric tests indicated a significant overlap between the top neighbors 
of interrogated 3q29 interval genes and negative control gene-sets. In contrast, 19 out of 96 
hypergeometric tests revealed a significant overrepresentation of SZ, ASD, and/or IDD-risk gene-
sets among the same top neighbors, amounting to a proportion that is an order of magnitude 
larger than that of the negative controls (Fig. 3b). The substantial margin observed between these 
two enrichment ratios supports the high specificity and validity of our network-derived inferences 
for uncovering biology relevant to 3q29Del. 
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In summary, we identified 5,715 top neighbors of 3q29 interval genes, when combined across 
seven 3q29 modules. These top neighbors are predicted to function as direct interacting partners 
of 3q29 interval genes, participating in the same or overlapping biological pathways within the 
modular organization of molecular systems subserving the healthy functioning of the adult human 
PFC. Intriguingly, several 3q29 interval genes themselves were identified as top neighbors of 
other 3q29 interval genes, further suggesting functional convergence of subsets of genes within 
the 3q29 locus. Finally, our results revealed that BDH1, CEP19, DLG1, FBXO45, PIGZ, RNF168, 
SENP5, UBXN7 and WDR53 form strong co-expression-based ties with network partners that 
show a significant overlap with known SZ, ASD and/or IDD-risk genes curated from evidence-
based literature (Fig. 3b). By leveraging the guilt by association principle, we prioritize these nine 
3q29 interval genes, along with their 284 SZ, ASD, and/or IDD-related top neighbors from 
significant overlap tests as primary drivers of the major neuropsychiatric consequences of 
3q29Del (Fig. 3b, Fig. 4a).  
 
See Tables S2.1-3 for full lists of curated gene-sets, top neighbors, prioritized driver genes and 
detailed results of the overlap analysis.  
 
Disease-relevant driver genes prioritized by network analysis load onto key biological 
pathways linked to neuropsychiatric disorders. 
 
To formulate testable hypotheses about the key biological mechanisms linking the 3q29 locus to 
major neuropsychiatric phenotypes associated with 3q29Del syndrome, we interrogated whether 
the prioritized driver genes identified in our network analysis assemble into known biological 
pathways and processes that are annotated in major gene ontology databases. Functional 
enrichment analysis on the union of our 293 prioritized driver genes (Fig. 4a) revealed their 
significant overrepresentation in several key biological pathways and processes, some of which 
are specific to nervous system function, while others are core cellular processes that are non-
specific to an organ system (Fig. 4b, 4c). 
 
Specifically, our findings indicate enrichment of our prioritized driver genes in eight biological 
pathways annotated by the Reactome and KEGG databases. These are axon guidance (REAC:R-
HSA-422475, adjusted P = 3.64E-03), post-translational protein modifications (REAC:R-HSA-
597592, adjusted P = 5.24E-03), long-term potentiation (KEGG:04720, adjusted P = 7.29E-03), 
diseases of signal transduction (REAC:R-HSA-5663202, adjusted P = 1.00E-02), regulation of 
actin cytoskeleton (KEGG:04810, adjusted P = 1.17E-02), deubiquitination (REAC:R-HSA-
5688426, adjusted P = 2.42E-02), chromatin organization (REAC:R-HSA-4839726, adjusted P = 
3.32E-02), and diseases associated with glycosylation precursor biosynthesis (REAC:R-HSA-
5609975, adjusted P = 4.06E-02). This analysis also revealed the enrichment of our prioritized 
driver genes for several fundamental biological processes annotated by the Gene Ontology 
Project (GO:BP), including chromosome organization (GO:0051276, adjusted P = 3.81E-09), 
histone modification (GO:0016570, adjusted P = 3.31E-08), cellular component morphogenesis 
(GO:0032989, adjusted P = 4.57E-06),  regulation of organelle organization (GO:0033043, 
adjusted P = 6.40E-06), DNA metabolic process (GO:0006259, adjusted P = 3.83E-05), regulation 
of telomere maintenance (GO:0032204, adjusted P = 6.62E-05), neuron differentiation 
(GO:0030182, adjusted P = 1.88E-04), protein modification by small protein conjugation or 
removal (GO:0070647, adjusted P = 2.34E-04), neuron projection morphogenesis (GO:0048812, 
adjusted P = 4.46E-04), neurogenesis (GO:0022008, adjusted P = 1.89E-03), chemical synaptic 
transmission, postsynaptic (GO:0099565, adjusted P = 2.37E-03), post-embryonic development 
(GO:0009791, adjusted P = 2.66E-03), synapse organization (GO:0050808, adjusted P = 3.20E-
03), protein acetylation (GO:0006473, adjusted P = 5.48E-03), cell surface receptor signaling 
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pathway involved in cell-cell signaling (GO:1905114, adjusted P = 6.41E-03), and excitatory 
postsynaptic potential (GO:0060079, adjusted P = 8.97E-03). We hypothesize that the disruption 
of one or more of these biological pathways and processes, some of which have been 
demonstrated to be altered in idiopathic SZ and ASD [88, 89], lie on the casual pathway to 
neuropsychopathology in 3q29Del syndrome.  
 
The top 20 biological processes and pathways enriched among our prioritized driver genes is 
shown in Fig. 4b. For clear illustration of our findings, we organized all identified GO:BP terms 
into a network of related functional annotation categories in Fig. 4c. Detailed results of this 
functional enrichment analysis, including a full list of prioritized drivers overlapping each identified 
gene ontology term are provided in Table S2.5. 
 
Network-derived targets predict differentially expressed genes in the mouse model of 
3q29Del. 
 
We tested the enrichment of the network targets identified in this study for differential expression 
in Del16+/Bdh1-Tfrc mice compared with wild-type (WT) littermates [76]. RNA-Seq analysis revealed 
290 protein-coding DEGs with known human homologs (P < 0.05), 17 of which were identified as 
3q29 interval genes (Bdh1, Cep19, Dlg1, Fbxo45, Mfi2, Ncbp2, Nrros, Pak2, Pcyt1a, Pigx, Pigz, 
Rnf168, Senp5, Tctex1d2, Tfrc, Ubxn7, Wdr53) (Fig. 5, Table S2.5). All 290 DEGs were tested 
for enrichment of network-derived targets identified via WGCNA at three scales of network 
interconnectedness: i) broad 3q29 network (11,924 genes), ii) top-neighbor-based 3q29 
subnetwork (5,087 genes), and iii) prioritized drivers (280 genes). All compared gene-sets were 
filtered for mouse-human homology. Hypergeometric tests revealed significant enrichment of the 
interrogated DEGs for network-derived ties at all three levels of this analysis (P < 0.05; Fig. 5b).  
 
Specifically, 212 out of 290 DEGs were found to overlap with the broad 3q29 network (P = 2.42e-
07), with a 1.50-fold over-enrichment compared to what would be expected by random chance. 
74 out of 290 DEGs were found to overlap with the top-neighbor-based 3q29 subnetwork (P = 
0.03), with a 1.22-fold over-enrichment compared to what would be expected by random chance. 
Finally, 12 out of 290 DEGs were found to overlap with prioritized drivers predicted to be 
associated with the neurodevelopmental and psychiatric consequences of 3q29Del (P = 1.43e-
04), with a 3.61-fold over-enrichment compared to what would be expected by random chance 
(Fig. 5b). The list of DEGs, including the subsets intersecting WGCNA-derived targets, and the 
list of genes corresponding to the three levels of network interconnectedness interrogated in this 
overlap analysis are provided in Table S2.5. 
 
In conclusion, prediction of novel gene-function and gene-disease associations is an important 
goal in computational biology, particularly for un- or under-studied territories of the human 
genome, such as the recurrent 3q29Del locus. These genes have been neglected, in part, due to 
attention bias in biomedical research that disproportionately concentrates on isolated 
interrogation of well-studied genes [93]. The network-based guilt-by-association approach used 
in this study is a promising strategy to rectify this skew and to advance our understanding of the 
full complement of the human genome and the full scope of genetic risk for severe mental 
illnesses in a systems biology framework. 
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Availability of data & materials 
 
We provide two multi-sheet xlsx files (Supp. Tables S1 and S2), containing further detailed results 
of our analysis. Corresponding R code is available upon request. 
 
The GTEx data (release version 6) used for the analyses described in this manuscript were 
downloaded from the GTEx portal on 01/08/2019 (http://www.gtexportal.org/home/datasets/, file 
name: “GTEx_Analysis_v6_RNA-seq_RNA-SeQCv1.1.8_gene_rpkm.gct.gz”); dbGaP accession 
number: phs000424.v6.p1. The Genotype-Tissue Expression (GTEx) Project was supported by 
the Common Fund of the Office of the Director of the National Institutes of Health, and by NCI, 
NHGRI, NHLBI, NIDA, NIMH, and NINDS. 
 
The BrainSpan data (Developmental Transcriptome Dataset) used to construct our test network 
were downloaded from the Allen Brain Atlas portal on 01/12/2019 (https://www.brainspan.org/ 
static/download/, file name: “RNA-Seq Gencode v10 summarized to genes”); dbGaP accession 
number: phs000755.v2.p1.
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